Please note that if you use a local installation of MindsDB, instead of MindsDB Cloud, you should install
transformers==4.21.0
to be able to use the Hugging Face models.How to Bring the Hugging Face Model to MindsDB
We use theCREATE MODEL
statement to bring the Hugging Face models to MindsDB.
One way is to download Hugging Face models from their repository. To do so, you need to specify the
model_name
parameter.Copy
Ask AI
CREATE MODEL mindsdb.spam_classifier
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'mrm8488/bert-tiny-finetuned-sms-spam-detection',
input_column = 'text_spammy',
labels = ['ham', 'spam'];
Please note that the examples presented here use SQL. To see how to create Hugging Face models in Mongo database using MQL, check out this example on sentiment classification.
Model 1: Spam Classifier
Here is an example of a binary classification. The model determines whether a text string is spam or not.Copy
Ask AI
CREATE MODEL mindsdb.spam_classifier
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'mrm8488/bert-tiny-finetuned-sms-spam-detection',
input_column = 'text_spammy',
labels = ['ham', 'spam'];
spam_classifier
model.Copy
Ask AI
DESCRIBE spam_classifier;
Copy
Ask AI
+---------------+-------+--------+--------+-------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT|UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+---------------+-------+--------+--------+-------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|spam_classifier|mindsdb|complete|[NULL] |PRED |up_to_date |22.10.2.1 |[NULL]|[NULL] |{'target': 'PRED', 'using': {'engine': 'huggingface', 'task': 'text-classification', 'model_name': 'mrm8488/bert-tiny-finetuned-sms-spam-detection', 'input_column': 'text_spammy', 'labels': ['ham', 'spam']}}|
+---------------+-------+--------+--------+-------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text_spammy AS input_text
FROM example_db.demo_data.hf_test AS t
JOIN mindsdb.spam_classifier AS h;
Copy
Ask AI
+----+---------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
|PRED|PRED_explain |input_text |
+----+---------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
|spam|{'spam': 0.9051626920700073, 'ham': 0.09483727067708969} |Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's |
|ham |{'ham': 0.9380123615264893, 'spam': 0.061987683176994324}|Nah I don't think he goes to usf, he lives around here though |
|spam|{'spam': 0.9064534902572632, 'ham': 0.09354648739099503} |WINNER!! As a valued network customer you have been selected to receive a £900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only. |
+----+---------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
Model 2: Sentiment Classifier
Here is an example of a multi-value classification. The model determines the sentiment of a text string, where possible values arenegative
, neutral
, and positive
.
Copy
Ask AI
CREATE MODEL mindsdb.sentiment_classifier
PREDICT sentiment
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'cardiffnlp/twitter-roberta-base-sentiment',
input_column = 'text_short',
labels = ['negative', 'neutral', 'positive'];
sentiment_classifier
model.Copy
Ask AI
DESCRIBE sentiment_classifier;
Copy
Ask AI
+--------------------+-------+--------+--------+---------+-------------+---------------+------+-----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT |UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+--------------------+-------+--------+--------+---------+-------------+---------------+------+-----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|sentiment_classifier|mindsdb|complete|[NULL] |sentiment|up_to_date |22.10.2.1 |[NULL]|[NULL] |{'target': 'sentiment', 'using': {'engine': 'huggingface', 'task': 'text-classification', 'model_name': 'cardiffnlp/twitter-roberta-base-sentiment', 'input_column': 'text_short', 'labels': ['negative', 'neutral', 'positive']}}|
+--------------------+-------+--------+--------+---------+-------------+---------------+------+-----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text_short AS input_text
FROM example_db.demo_data.hf_test AS t
JOIN mindsdb.sentiment_classifier AS h;
Copy
Ask AI
+---------+----------------------------------------------------------------------------------------------------+-------------------+
|sentiment|sentiment_explain |input_text |
+---------+----------------------------------------------------------------------------------------------------+-------------------+
|negative |{'negative': 0.9679920077323914, 'neutral': 0.02736542373895645, 'positive': 0.0046426113694906235} |I hate tacos |
|positive |{'positive': 0.7607280015945435, 'neutral': 0.2332666665315628, 'negative': 0.006005281116813421} |I want to dance |
|positive |{'positive': 0.9835041761398315, 'neutral': 0.014900505542755127, 'negative': 0.0015953202964738011}|Baking is the best |
+---------+----------------------------------------------------------------------------------------------------+-------------------+
Model 3: Zero-Shot Classifier
Here is an example of a zero-shot classification. The model determines to which of the defined categories a text string belongs.Copy
Ask AI
CREATE MODEL mindsdb.zero_shot_tcd
PREDICT topic
USING
engine = 'huggingface',
task = 'zero-shot-classification',
model_name = 'facebook/bart-large-mnli',
input_column = 'text_short',
candidate_labels = ['travel', 'cooking', 'dancing'];
zero_shot_tcd
model.Copy
Ask AI
DESCRIBE zero_shot_tcd;
Copy
Ask AI
+-------------+-------+--------+--------+--------+-------------+---------------+------+-----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT |UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+-------------+-------+--------+--------+--------+-------------+---------------+------+-----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|zero_shot_tcd|mindsdb|complete|[NULL] |topic |up_to_date |22.10.2.1 |[NULL]|[NULL] |{'target': 'topic', 'using': {'engine': 'huggingface', 'task': 'zero-shot-classification', 'model_name': 'facebook/bart-large-mnli', 'input_column': 'text_short', 'candidate_labels': ['travel', 'cooking', 'dancing']}}|
+-------------+-------+--------+--------+--------+-------------+---------------+------+-----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text_short AS input_text
FROM example_db.demo_data.hf_test AS t
JOIN mindsdb.zero_shot_tcd AS h;
Copy
Ask AI
+-------+--------------------------------------------------------------------------------------------------+-------------------+
|topic |topic_explain |input_text |
+-------+--------------------------------------------------------------------------------------------------+-------------------+
|cooking|{'cooking': 0.7530364990234375, 'travel': 0.1607145369052887, 'dancing': 0.08624900877475739} |I hate tacos |
|dancing|{'dancing': 0.9746809601783752, 'travel': 0.015539299696683884, 'cooking': 0.009779711253941059} |I want to dance |
|cooking|{'cooking': 0.9936348795890808, 'travel': 0.0034196735359728336, 'dancing': 0.0029454431496560574}|Baking is the best |
+-------+--------------------------------------------------------------------------------------------------+-------------------+
Model 4: Translation
Here is an example of a translation. The model gets an input string in English and translates it into French.Copy
Ask AI
CREATE MODEL mindsdb.translator_en_fr
PREDICT translated
USING
engine = 'huggingface',
task = 'translation',
model_name = 't5-base',
input_column = 'text_short',
lang_input = 'en',
lang_output = 'fr';
translator_en_fr
model.Copy
Ask AI
DESCRIBE translator_en_fr;
Copy
Ask AI
+----------------+-------+--------+--------+----------+-------------+---------------+------+-----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT |UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+----------------+-------+--------+--------+----------+-------------+---------------+------+-----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|translator_en_fr|mindsdb|complete|[NULL] |translated|up_to_date |22.10.2.1 |[NULL]|[NULL] |{'target': 'translated', 'using': {'engine': 'huggingface', 'task': 'translation', 'model_name': 't5-base', 'input_column': 'text_short', 'lang_input': 'en', 'lang_output': 'fr'}}|
+----------------+-------+--------+--------+----------+-------------+---------------+------+-----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text_short AS input_text
FROM example_db.demo_data.hf_test AS t
JOIN mindsdb.translator_en_fr AS h;
Copy
Ask AI
+-------------------------------+-------------------+
|translated |input_text |
+-------------------------------+-------------------+
|Je déteste les tacos |I hate tacos |
|Je veux danser |I want to dance |
|La boulangerie est la meilleure|Baking is the best |
+-------------------------------+-------------------+
Model 5: Summarisation
Here is an example of a summarization.Copy
Ask AI
CREATE MODEL mindsdb.summarizer_10_20
PREDICT text_summary
USING
engine = 'huggingface',
task = 'summarization',
model_name = 'sshleifer/distilbart-cnn-12-6',
input_column = 'text_long',
min_output_length = 10,
max_output_length = 20;
summarizer_10_20
model.Copy
Ask AI
DESCRIBE summarizer_10_20;
Copy
Ask AI
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT |UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|summarizer_10_20|mindsdb|complete|[NULL] |text_summary|up_to_date |22.10.2.1 |[NULL]|[NULL] |{'target': 'text_summary', 'using': {'engine': 'huggingface', 'task': 'summarization', 'model_name': 'sshleifer/distilbart-cnn-12-6', 'input_column': 'text_long', 'min_output_length': 10, 'max_output_length': 20}}|
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text_long AS input_text
FROM example_db.demo_data.hf_test AS t
JOIN mindsdb.summarizer_10_20 AS h;
Copy
Ask AI
+--------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|text_summary |input_text |
+--------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|A taco is a traditional Mexican food consisting of a small hand-sized corn- or |A taco is a traditional Mexican food consisting of a small hand-sized corn- or wheat-based tortilla topped with a filling. The tortilla is then folded around the filling and eaten by hand. A taco can be made with a variety of fillings, including beef, pork, chicken, seafood, beans, vegetables, and cheese, allowing for great versatility and variety. |
|Dance is a performing art form consisting of sequences of movement, either improvised or purposefully selected|Dance is a performing art form consisting of sequences of movement, either improvised or purposefully selected. This movement has aesthetic and often symbolic value.[nb 1] Dance can be categorized and described by its choreography, by its repertoire of movements, or by its historical period or place of origin. |
|Baking is a method of preparing food that uses dry heat, typically in an oven |Baking is a method of preparing food that uses dry heat, typically in an oven, but can also be done in hot ashes, or on hot stones. The most common baked item is bread but many other types of foods can be baked. Heat is gradually transferred from the surface of cakes, cookies, and pieces of bread to their center. As heat travels through, it transforms batters and doughs into baked goods and more with a firm dry crust and a softer center. Baking can be combined with grilling to produce a hybrid barbecue variant by using both methods simultaneously, or one after the other. Baking is related to barbecuing because the concept of the masonry oven is similar to that of a smoke pit.|
+--------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Model 6: Fill Mask
Here is an example of a masked language modeling task.Copy
Ask AI
CREATE MODEL mindsdb.fill_mask
PREDICT text_filled
USING
engine = 'huggingface',
task = 'fill-mask',
model_name = 'bert-base-uncased',
input_column = 'text';
fill_mask
model.Copy
Ask AI
DESCRIBE fill_mask;
Copy
Ask AI
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+--------------------------------------------------------------------------------------------------------------------+
|NAME |PROJECT|STATUS |ACCURACY|PREDICT |UPDATE_STATUS|MINDSDB_VERSION|ERROR |SELECT_DATA_QUERY|TRAINING_OPTIONS |
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+--------------------------------------------------------------------------------------------------------------------+
|fill_mask |mindsdb|complete|[NULL] |text_filled |up_to_date |23.3.5.0 |[NULL]|[NULL] |{'target': 'text_filled', 'using': {'task': 'fill-mask', 'model_name': 'bert-base-uncased', 'input_column': 'text'}}|
+----------------+-------+--------+--------+------------+-------------+---------------+------+-----------------+--------------------------------------------------------------------------------------------------------------------+
complete
, we can query for predictions.Copy
Ask AI
SELECT h.*, t.text AS input_text
FROM demo.texts AS t
JOIN mindsdb.fill_mask AS h;
Copy
Ask AI
+-------------------------+---------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|text_filled |input_text |text_filled_explain |
+-------------------------+---------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|the food was great! |The [MASK] was great! |{'the food was great!': 0.16309359669685364, 'the party was great!': 0.06305009871721268, 'the fun was great!': 0.04633583873510361, 'the show was great!': 0.043319422751665115, 'the music was great!': 0.02990395948290825} |
|the weather is good today|The weather is [MASK] today|{'the weather is good today': 0.22563229501247406, 'the weather is warm today': 0.07954009622335434, 'the weather is fine today': 0.047255873680114746, 'the weather is better today': 0.034303560853004456, 'the weather is mild today': 0.03092862293124199}|
+-------------------------+---------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
HuggingFace + MindsDB Models Library
Text Classification
Spam
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_spam
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'mariagrandury/roberta-base-finetuned-sms-spam-detection',
input_column = 'text',
labels = ['spam', 'ham'];
Copy
Ask AI
DESCRIBE hf_spam;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_spam
WHERE text = 'I like you. I love you.';
Copy
Ask AI
+----+--------------------------------------------------------+-----------------------+
|PRED|PRED_explain |text |
+----+--------------------------------------------------------+-----------------------+
|spam|{"ham":0.00020051795581821352,"spam":0.9997995495796204}|I like you. I love you.|
+----+--------------------------------------------------------+-----------------------+
Sentiment
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_sentiment
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'cardiffnlp/twitter-roberta-base-sentiment',
input_column = 'text',
labels = ['neg', 'neu', 'pos'];
Copy
Ask AI
DESCRIBE hf_sentiment;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_sentiment
WHERE text = 'I like you. I love you.';
Copy
Ask AI
+----+--------------------------------------------------------------------------------+-----------------------+
|PRED|PRED_explain |text |
+----+--------------------------------------------------------------------------------+-----------------------+
|pos |{"neg":0.003046575468033552,"neu":0.021965451538562775,"pos":0.9749879240989685}|I like you. I love you.|
+----+--------------------------------------------------------------------------------+-----------------------+
Sentiment (Finance)
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_sentiment_finance
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'ProsusAI/finbert',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_sentiment_finance;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_sentiment_finance
WHERE text = 'Stocks rallied and the British pound gained.';
Copy
Ask AI
+--------+-------------------------------------------------------------------------------------------+--------------------------------------------+
|PRED |PRED_explain |text |
+--------+-------------------------------------------------------------------------------------------+--------------------------------------------+
|positive|{"negative":0.0344734713435173,"neutral":0.06716493517160416,"positive":0.8983616232872009}|Stocks rallied and the British pound gained.|
+--------+-------------------------------------------------------------------------------------------+--------------------------------------------+
Emotions (6)
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_emotions_6
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'j-hartmann/emotion-english-distilroberta-base',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_emotions_6;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_emotions_6
WHERE text = 'Oh Happy Day';
Copy
Ask AI
+----+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
|PRED|PRED_explain |text |
+----+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
|joy |{"anger":0.0028446922078728676,"disgust":0.0009613594156689942,"fear":0.0007112706662155688,"joy":0.7692911624908447,"neutral":0.037753619253635406,"sadness":0.015293814241886139,"surprise":0.17314413189888}|Oh Happy Day|
+----+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------+
Toxicity
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_toxicity
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'SkolkovoInstitute/roberta_toxicity_classifier',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_toxicity;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_toxicity
WHERE text = 'I like you. I love you.';
Copy
Ask AI
+-------+-------------------------------------------------------------+-----------------------+
|PRED |PRED_explain |text |
+-------+-------------------------------------------------------------+-----------------------+
|neutral|{"neutral":0.9999547004699707,"toxic":0.00004535282641882077}|I like you. I love you.|
+-------+-------------------------------------------------------------+-----------------------+
ESG (6)
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_esg_6
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'yiyanghkust/finbert-esg',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_esg_6;
complete
, we can query for predictions.
Copy
Ask AI
SELECT * FROM mindsdb.hf_esg_6
WHERE text = 'Rhonda has been volunteering for several years for a variety of charitable community programs.';
Copy
Ask AI
+------+---------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+
|PRED |PRED_explain |text |
+------+---------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+
|Social|{"Environmental":0.0034267122391611338,"Governance":0.004729956854134798,"None":0.001239194767549634,"Social":0.9906041026115417}|Rhonda has been volunteering for several years for a variety of charitable community programs.|
+------+---------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------+
ESG (26)
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_esg_26
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'yiyanghkust/finbert-esg',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_esg_26;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_esg_26
WHERE text = 'We believe it is essential to establish validated conflict-free sources of 3TG within the Democratic Republic of the Congo (the “DRC”) and adjoining countries (together, with the DRC, the “Covered Countries”), so that these minerals can be procured in a way that contributes to economic growth and development in the region. To aid in this effort, we have established a conflict minerals policy and an internal team to implement the policy.';
Copy
Ask AI
+------+-----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|PRED |PRED_explain |text |
+------+-----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|Social|{"Environmental":0.2031959593296051,"Governance":0.08251894265413284,"None":0.050893042236566544,"Social":0.6633920073509216}|We believe it is essential to establish validated conflict-free sources of 3TG within the Democratic Republic of the Congo (the “DRC”) and adjoining countries (together, with the DRC, the “Covered Countries”), so that these minerals can be procured in a way that contributes to economic growth and development in the region. To aid in this effort, we have established a conflict minerals policy and an internal team to implement the policy.|
+------+-----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Hate Speech
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_hate
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'Hate-speech-CNERG/bert-base-uncased-hatexplain',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_hate;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_hate
WHERE text = 'I like you. I love you.';
Copy
Ask AI
+------+-----------------------------------------------------------------------------------------------+-----------------------+
|PRED |PRED_explain |text |
+------+-----------------------------------------------------------------------------------------------+-----------------------+
|normal|{"hate speech":0.03551718592643738,"normal":0.7747423648834229,"offensive":0.18974047899246216}|I like you. I love you.|
+------+-----------------------------------------------------------------------------------------------+-----------------------+
Crypto Buy Signals
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_crypto
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'ElKulako/cryptobert',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_crypto;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_crypto
WHERE text = 'BTC is killing it right now';
Copy
Ask AI
+-------+------------------------------------------------------------------------------------------+---------------------------+
|PRED |PRED_explain |text |
+-------+------------------------------------------------------------------------------------------+---------------------------+
|Bullish|{"Bearish":0.0002816587220877409,"Bullish":0.559426486492157,"Neutral":0.4402918517589569}|BTC is killing it right now|
+-------+------------------------------------------------------------------------------------------+---------------------------+
US Political Party
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_us_party
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'm-newhauser/distilbert-political-tweets',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_us_party;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_us_party
WHERE text = 'This pandemic has shown us clearly the vulgarity of our healthcare system. Highest costs in the world, yet not enough nurses or doctors. Many millions are uninsured, while insurance company profits soar. The struggle continues. Healthcare is a human right. Medicare for all.';
Copy
Ask AI
+--------+-------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|PRED |PRED_explain |text |
+--------+-------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|Democrat|{"Democrat":0.9999973773956299,"Republican":0.00000261212517216336}|This pandemic has shown us clearly the vulgarity of our healthcare system. Highest costs in the world, yet not enough nurses or doctors. Many millions are uninsured, while insurance company profits soar. The struggle continues. Healthcare is a human right. Medicare for all.|
+--------+-------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Question Detection
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_question
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'shahrukhx01/bert-mini-finetune-question-detection',
input_column = 'text',
labels = ['question', 'query'];
Copy
Ask AI
DESCRIBE hf_question;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_question
WHERE text = 'Where can I buy electronics in London';
Copy
Ask AI
+-----+--------------------------------------------------------------+-------------------------------------+
|PRED |PRED_explain |text |
+-----+--------------------------------------------------------------+-------------------------------------+
|query|{"query":0.9997773766517639,"question":0.00022261829872149974}|Where can I buy electronics in London|
+-----+--------------------------------------------------------------+-------------------------------------+
Industry
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_industry
PREDICT PRED
USING
engine = 'huggingface',
task = 'text-classification',
model_name = 'sampathkethineedi/industry-classification',
input_column = 'text';
Copy
Ask AI
DESCRIBE hf_industry;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_industry
WHERE text = 'Low latency is one of our best cloud features';
Copy
Ask AI
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------+
|PRED |PRED_explain |text |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------+
|Systems Software|{"Advertising":0.000006795735771447653,"Aerospace & Defense":0.00001537964453746099,"Apparel Retail":5.350161131900677e-7,"Apparel, Accessories & Luxury Goods":0.000002604161181807285,"Application Software":0.009111878462135792,"Asset Management & Custody Banks":0.00003155150625389069,"Auto Parts & Equipment":0.000015504940165556036,"Biotechnology":6.533917940032552e-8,"Building Products":7.348538133555849e-8,"Casinos & Gaming":0.000013775999832432717,"Commodity Chemicals":0.0000010432338513055583,"Communications Equipment":0.000019887389498762786,"Construction & Engineering":0.000001826199536480999,"Construction Machinery & Heavy Trucks":0.000009827364920056425,"Consumer Finance":0.0000018292046206624946,"Data Processing & Outsourced Services":0.0000010666744856280275,"Diversified Metals & Mining":0.000006960767223063158,"Diversified Support Services":0.000016824227714096196,"Electric Utilities":0.000003896044290740974,"Electrical Components & Equipment":0.000001626394464437908,"Electronic Equipment & Instruments":0.00003863943129545078,"Environmental & Facilities Services":0.000736175337806344,"Gold":0.00002220332135038916,"Health Care Equipment":4.6927588925882446e-8,"Health Care Facilities":7.432880124724761e-7,"Health Care Services":6.929263918209472e-7,"Health Care Supplies":2.1007431882935634e-7,"Health Care Technology":0.000003907185146090342,"Homebuilding":3.903339234057057e-7,"Hotels, Resorts & Cruise Lines":6.0527639789143e-7,"Human Resource & Employment Services":5.48697983049351e-7,"IT Consulting & Other Services":0.0000723653138265945,"Industrial Machinery":7.230253231682582e-7,"Integrated Telecommunication Services":2.8266379104024963e-7,"Interactive Media & Services":0.00003454017496551387,"Internet & Direct Marketing Retail":0.000003871373337460682,"Internet Services & Infrastructure":0.0007196652004495263,"Investment Banking & Brokerage":0.0000040634336073708255,"Leisure Products":0.000002158361439796863,"Life Sciences Tools & Services":0.000002861268058040878,"Movies & Entertainment":0.000007286199888767442,"Oil & Gas Equipment & Services":0.000004376991455501411,"Oil & Gas Exploration & Production":0.000005569149834627751,"Oil & Gas Refining & Marketing":0.000012647416951949708,"Oil & Gas Storage & Transportation":0.000005852583853993565,"Packaged Foods & Meats":0.0000011130315442642313,"Personal Products":0.00000970239307207521,"Pharmaceuticals":0.0000037546726616710657,"Property & Casualty Insurance":0.000006116194072092185,"Real Estate Operating Companies":0.00001882187461887952,"Regional Banks":0.0000011669454806906288,"Research & Consulting Services":0.000024276219846797176,"Restaurants":8.598511840318679e-7,"Semiconductors":0.0000021006283077440457,"Specialty Chemicals":0.000004160017397225602,"Specialty Stores":2.644004553076229e-7,"Steel":0.0000013566890402216814,"Systems Software":0.9889177083969116,"Technology Distributors":0.00001339179198112106,"Technology Hardware, Storage & Peripherals":0.00004790363891515881,"Thrifts & Mortgage Finance":3.924862141957419e-7,"Trading Companies & Distributors":0.0000035233156268077437}|Low latency is one of our best cloud features|
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------+
Zero-Shot Classification
Bart
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_zs_bart
PREDICT PRED
USING
engine = 'huggingface',
task = 'zero-shot-classification',
model_name = 'facebook/bart-large-mnli',
input_column = 'text',
candidate_labels = ['Books', 'Household', 'Clothing & Accessories', 'Electronics'];
Copy
Ask AI
DESCRIBE hf_zs_bart;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_zs_bart
WHERE text = 'Paper Plane Design Framed Wall Hanging Motivational Office Decor Art Prints';
Copy
Ask AI
+---------+------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------+
|PRED |PRED_explain |text |
+---------+------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------+
|Household|{"Books":0.1876104772090912,"Clothing & Accessories":0.08688066899776459,"Electronics":0.14785148203372955,"Household":0.5776574015617371}|Paper Plane Design Framed Wall Hanging Motivational Office Decor Art Prints|
+---------+------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------+
Translation
English to French (T5)
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_t5_en_fr
PREDICT PRED
USING
engine = 'huggingface',
task = 'translation',
model_name = 't5-base',
input_column = 'text',
lang_input = 'en',
lang_output = 'fr';
Copy
Ask AI
DESCRIBE hf_t5_en_fr;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_t5_en_fr
WHERE text = 'The monkey is on the branch';
Copy
Ask AI
+---------------------------+---------------------------+
|PRED |text |
+---------------------------+---------------------------+
|Le singe est sur la branche|The monkey is on the branch|
+---------------------------+---------------------------+
Summarization
Bart
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_bart_sum_20
PREDICT PRED
USING
engine = 'huggingface',
task = 'summarization',
model_name = 'sshleifer/distilbart-cnn-12-6',
input_column = 'text',
min_output_length = 5,
max_output_length = 20;
Copy
Ask AI
DESCRIBE hf_bart_sum_20;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_bart_sum_20
WHERE text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.';
Copy
Ask AI
+-------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|PRED |text |
+-------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|The tower is 324 metres (1,063 ft) tall, about the same|The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.|
+-------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Google Pegasus
Let’s create a model.Copy
Ask AI
CREATE MODEL mindsdb.hf_peg_sum_20
PREDICT PRED
USING
engine = 'huggingface',
task = 'summarization',
model_name = 'google/pegasus-xsum',
input_column = 'text',
min_output_length = 5,
max_output_length = 20;
Copy
Ask AI
DESCRIBE hf_peg_sum_20;
complete
, we can query for predictions.
Copy
Ask AI
SELECT *
FROM mindsdb.hf_peg_sum_20
WHERE text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.';
Copy
Ask AI
+------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|PRED |text |
+------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|The Eiffel Tower is a landmark in Paris, France.|The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.|
+------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+